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Abstract
It was shown that quantum analysis constitutes the proper analytic basis for
the quantization of Lyapunov exponents in the Heisenberg picture. Differences
among various quantizations of Lyapunov exponents are clarified.

PACS number: 05.45.Mt

1. Introduction

One of the most useful concepts in the theory of (classical) dynamical systems is the idea
of a Lyapunov exponent (see [1, 4, 7, 8, 16]). It measures the average rate of growth of the
separation of orbits which differ by a small vector at time zero.

For the non-commutative setting, this concept has many various generalizations which
are called quantum Lyapunov exponents, QLE for short (see [5, 6, 10, 11, 13, 15, 21–23] and
references therein). As there are different definitions of QLE, it is of interest to know whether
there exists a common analytical basis for these generalizations. In particular, such a basis
could be very useful in establishing relations among various quantizations schemes.

In this letter, we intend to argue that the so-called quantum analysis (see [17–20]) can
be taken as such framework for the definitions which are given in the Heisenberg picture.
Subsequently, we review several representative definitions and clarify differences among
them.

2. Preliminaries

Let us set up notation and terminology. The triple

(X, τ : X → X,µ) [(X, τt : X → X,µ)] (2.1)

defines discrete (continuous) classical dynamical system where X is a measurable space, µ is
a measure and finally τ (τt ) is a measure-preserving map (maps respectively). If X is equipped
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with the differential calculus then the classical Lyapunov exponent is defined as

λ(x, y) = lim
n→∞

1

n
log|Dyτ

n(x)|
[
λ(x, y) = lim

t→∞
1

t
log|Dyτt (x)|

]
(2.2)

where Dyτ
n(x) (Dyτt (x)) denotes directional derivative of τ composed with itself n times (of

τt respectively) at x. By a non-commutative discrete (continuous) dynamical system we mean

(A, τ : A → A, φ) [(A, τt : A → A, φ)] (2.3)

where A is a C∗-algebra (with unit), τ (τt ) is a smooth enough positive map (maps respectively)
and φ is a state. Let us note that, in general, τ (τt ) does not need to be a linear map.

Non-commutative dynamical systems, so in particular the concept of QLE, can be studied
by means of quantum analysis, i.e. following Suzuki, one can employ the analysis using a
non-commutative calculus of operator derivatives and integrals, where derivatives are defined
within Banach space technique on the basis of the Leibniz rule, irrespective of their explicit
representations such as the Gâteaux derivative or commutator, see [17, 19, 20].

In particular, putting δA ≡ [A, ·], one can verify (see [19]) that δA→B ≡ −δ−1
A δB is the

well-defined map satisfying the Leibniz rule, when its domainDA consists of convergent power
series of the operator A (convergent in norm). Moreover, one can obtain the nice formula for
any derivative (satisfying the Leibniz rule) D (cf [19]), namely,

D(Aτ(A)) = D(τ(A)A) (2.4)

when τ(A) ∈ DA. Then, one has

δADτ(A) = δτ(A)DA = −δDAτ(A), (2.5)

hence

Dτ(A) = −δ−1
A δDAτ(A) ≡ δA→DAτ(A). (2.6)

Finally, following Suzuki (see [19] for details) we define another kind of differential
dA→B , satisfying the Leibniz rule for B = dA, with the use of the partial inner derivation, i.e.

dA→B ≡ δ(−δ−1
A B);A, (2.7)

and the commutator δ(−δ−1
A B) is taken only with the operator A in a multivariate operator

f (A,B). The domain DA,B of dA→B is given by the set of convergent non-commuting power
series of operators A and B.

With these preparations, we will discuss various quantizations in which the concept of
Lyapunov exponent can be introduced.

3. Quantum Lyapunov exponents

(A) We begin with the first algebraic (and in fact very straightforward) generalization of
Lyapunov exponent. It is defined here for discrete quantum dynamical systems only (see [13]):

λq(τ,A,B) = lim
n→∞

1

n
log‖(DBτn)(A)‖ (3.1)

where we have used the Gâteaux derivation. Having defined QLE, λq , one should ask about
its existence. For the quantization (3.1) this question splits naturally into two cases:

(i) τ(·) is a (nonlinear) completely positive map.
(ii) τ(·) is a smooth positive (but not completely positive) function of A.
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Case (i) was treated in [13]. We only remark that when τ is the sum of multilinear maps
the product structure of derivatives is not so essential as for plain positive maps and the analysis
of λq can be done without using the quantum analysis. In contrast, in case (ii) the analysis
of the existence of λq needs the use of quantum analysis and as far as we know every model
has been treated separately (see [12]), e.g. in [2] non-trivial exponents for concrete models in
quantum optics were shown.

(B) As the second quantization, we consider that which was given in [5]. Denote by (M, τt ) a
quantum dynamical system based on von Neumann algebra M and on a distinguished evolution
τt . Namely, let δj be the derivation generating the ‘horocyclic’ action σ

j
s on a von Neumann

algebra M, i.e. for the map R � s → σ
j
s ∈ Aut(M) one has

τt ◦ σ j
s ◦ τ−t = σ

j

e
−λj t

s
(3.2)

where λj , s, t ∈ R. Then,

λE(j,A) = lim
t→∞

1

t
log‖δj τt (A)‖ (3.3)

can be considered as another quantization of the Lyapunov exponent. We note that the proof
of the existence of (3.3) is an easy task. The discussion of other properties of λE will be
postponed to the final subsection and here we only note that the property (3.2) is essential for
the proper interpretation of this quantization.

(C) The last quantization which we wish to consider was proposed by Jauslin et al [10]. To
define it, let δL	α be the derivation generating the action σ (induced by translations on R

2) on
the Weyl algebra W constructed over R

2, i.e. R � s → σs ∈ Aut(W) is fixed. Consider
the dynamical system (W, τt (A) ≡ U ∗

t AUt), i.e. the dynamics τt is implemented by the
one-parameter family of unitary operators {Ut }. The number

λ(τ, L,A) = sup
	α∈R

2

lim sup
t→∞

1

t
log‖δL	α (τt (A))‖ (3.4)

was called the upper quantum Lyapunov exponent [10]. Let us note that λ given by (3.4) is
defined for very particular dynamical model as well as for the specific action. Moreover, its
existence is not guaranteed.

(D) Now we are in position to compare the above definitions as well as to elucidate the role of
derivatives δj and δL	α . To this end, we will use the framework of quantum analysis in which
the rules do not depend on explicit representation of derivations (cf section 2).

Let us recall the basic idea of Lyapunov exponents: we should study the evolution of a
slight change of initial conditions for the considered dynamical map. Implementing this idea
rigorously, one can study the variation of initial conditions resulting from the implementation
of an action σ ∈ Aut(M) (or on Aut(W)). Then, using the quantum analysis (see [19]) one is
led to investigate

d

ds
τt (σs(A)) = dτt (σs(A))

dσs(A)

dσs(A)

ds
= dτt (σs(A))

dσs(A)
δ(σs(A)) (3.5)

where σ denotes the action generated by the derivation δ. But, this does not offer any significant
elucidation of the role of δj and δL	α . This provides a clarification for D only.

However, the separation of initial conditions caused by the action σs , for small s, can also
be analysed using the operator Taylor expansion (cf [19])

τt (A + sδ(A)) =
∞∑

n=0

sn

n!
dn

A→δ(A)τt (A). (3.6)
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Hence,

lim
s→0

1

s
(τt (A + sδ(A)) − τt (A)) = dA→δ(A)τt (A) = δA→δ(A)τt (A) (3.7)

where the last equality follows from the formulae (2.26) in [19]. Hence, quantizating along
the lines given by (2.2) one arrives at

lim
t→∞

1

t
log‖δA→δ(A)τt (A)‖ (3.8)

or

lim sup
t→∞

1

t
log‖δA→δ(A)τt (A)‖.

We stress again: the change of initial conditions is implemented by the action σs . Obviously,
(3.8) can be considered as a particular case of definition (3.1).

Let us remark that it is natural in the spirit of quantum analysis framework to consider the
large class of τt -maps such that the following analyticity condition

τt (A) =
∞∑

n=0

an(t)A
n (3.9)

holds, where (an) is some sequence of functions. Then from [[19], (2.9)], we get

δA→Bτt (A) =
∞∑

m=1

am(t)

m−1∑
n=0

AnBAm−1−n =
∞∑

n,m=0

an+m+1(t)A
nBAm. (3.10)

With this assumption we have the following:

Lemma 3.1. Let ω(A) = {C ∈ DA : C = limm→∞ τtm(A) with limm→∞ tm = ∞} be the
ω-limit set of A [3]. If ω(A) 
= ∅ then limm→∞ 1

tm
log‖δA→Bτtm(A)‖ = 0 (cf definition (3.8))

for any sequence (tm) defining C ∈ ω(A).

Proof. Without loss of generality we may assume that A is self-adjoint. By AA we denote the
Abelian ∗-subalgebra generated by A and by σ(AA) the set of multiplicative functionals on
AA. Any ϕ ∈ σ(AA) gives rise to the power series ψt(z) = ∑∞

n=0 an(t)z
n (where z = ϕ(A)).

It follows from the assumption that for any t it has a nonzero radius of convergence uniformly
bounded from below. Since the set of analytic functions is closed in uniform topology,
there exists a limit ψ = limm→∞ ψtm , where ψ is analytic. Moreover, ψ

(n)
tm → ψ(n), hence

limm→∞ an(tm) exists for any n � 0. Finally, it follows from (3.10) that limm→∞ δA→Bτtm(A)

exists, so the limit in the statement of lemma is equal to 0. �

Example 3.2. Given a dynamics τt we define its orbit through A by γ (A) = ⋃
t�0 τt (A). If

we assume that γ (A) is precompact then from [3] we deduce that ω(A) is nonempty. Thus,
we can use the above lemma to show the existence of the limit (3.8) for this case.

Particularly, this is the case when τt is a solution of the evolution equation

u̇(t) + Au(t) � 0,

where A is some nonlinear operator (see [9] for details).

Next, let us consider the case when the action σs is applied to the orbit R � t �→ τt (A) ∈ A

for some C∗-algebra A. Then, one has

d

ds
σsτt (A)

∣∣∣∣
s=0

= δτt (A). (3.11)
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This leads to the following expression:

lim sup
t→∞

1

t
log‖δτt (A)‖. (3.12)

Clearly, (3.12) is the essential ingredient of definition (3.4) given in subsection 3(C). However,
taking into account the way in which (3.12) was originated, one could say that (3.4) can be
interpreted as a measure of asymptotic stability of the action σs along the fixed trajectory
R � t �→ τt (A) ∈ A and not necessarily as Lyapunov exponent for τt in the strict sense.

Turning to definition given by Emch et al (3.3), it should be noted that it is exactly the
‘horocyclic’ property, τt ◦ σ

j
s ◦ τ−t = σ

j

e
−λj t

s
which enables us to treat this quantization along

the lines of (3.8)—one can intertwine (‘commute’) the evolution τ with the action σ .
We want to conclude this paper with a comment why definition (3.1) also can be considered

as a quantization of the upper Lyapunov exponent (cf [14]). To this end, let us pick a self-
adjoint A ∈ A where for simplicity we will assume that A is a concrete C∗-algebra, i.e.
A ⊂ B(H) for some Hilbert space H. AA will denote the C∗-algebra generated by A and 1.
Obviously, AA plays the role of DA (cf section 2). Let us assume that τ(AA) ⊂ AA and that
the restriction of τn to AA, τn|AA

, has the Taylor expansion. Then, we can write

τ(A) =
∫

σ(A)

τ (λ) dE(λ) (3.13)

where the spectral resolution of A
(= ∫

σ(A)
λ dE(λ)

)
is used. Moreover,

τn(A) =
∫

σ(A)

τ n(λ) dE(λ) (3.14)

and

‖DBτn(A)‖ =
∥∥∥∥
∫

σ(A)

Dτn(λ)b(λ) dE(λ)

∥∥∥∥ (3.15)

where B ∈ AA and the function b(λ) is the image of B with respect to the (∗-spectral)
isomorphism φ : AA → C(σ (A)) with σ(A) denoting the spectrum of A. Let us restrict
ourselves to B = 1. Then, one has

λq(τ ;A, 1) = lim
n→∞

1

n
log

∥∥∥∥
∫

σ(A)

Dτn(λ) dE(λ)

∥∥∥∥
= lim

n→∞
1

n
sup

λ∈σ(A)

log|Dτn(λ)| = lim
n→∞ sup

λ

1

n
log|Dτn(λ)|. (3.16)

On the other hand, if

λcl(τ, λ) = lim
n→∞

1

n
log|Dτn(λ)| (3.17)

exists and the limit in (3.17) is uniform with respect to λ, then

λq(τ ;A, 1) = sup
λ

λcl(τ, λ). (3.18)

Therefore, we conclude that the norm used in definition (3.1) gives the quantum generalization
of the largest characteristic exponent. This legitimizes the claim that λq(τ,A, 1) can also be
considered as the quantization of the upper Lyapunov exponent.
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